
Often, a complex task is challenging, cognitive, analyti-
cal and effort demanding at first but later, with extensive 
training, becomes more immediate and perceptual and does 
not require focused attention and conscious processing. 
One example of such a process that has received an enor-
mous degree of study is categorization (Ashby & Maddox, 
2005). Another such process is reading, where the original, 
almost painful working out of a word or sentence becomes 
automatic (Carr, 1992)—even when contraindicated, such 
as in the Stroop effect (Stroop, 1935). The transition be-
tween these modes of processing requires further study. 
A related issue that has not received much attention is the 
visual- perceptual influences on these processes—when 
they are still cognitive, conscious, and analytic. We chose as 
the substrate for our study the game called Set. For the nov-
ice, it requires slow cognitive and conscious analysis of the 
display. Although these processes gradually become easier, 
quicker, and more perceptual, here we study conscious and 
unconscious perceptual influences on performance while 
the game is in its cognitive stage. Our ultimate goal is to 
understand better the perceptual mechanisms underlying 
set recognition as an instance of perceptual processes in-
fluencing cognitive tasks in general.

The Set visual perception game, demonstrated in Fig-
ure 1A, was invented in the U.S. by Marsha Jean Falco 
in 1974 (Set Enterprises Inc.; homepage: www.setgame 
.com). In the original game, each card has four dimensions, 
or attributes, and one out of three possible values for each, 

as follows: shape (diamond, ellipse, or wave), number (one, 
two, or three), filling (empty, striped, or filled), and color 
(originally, red, purple, and green; in our version, red, blue, 
and yellow). On each round, 12 cards are displayed on the 
table or, in our case, on the computer screen.

The goal is to identify a set, defined as 3 cards, being 
all different or all alike within each dimension, indepen-
dently of the other dimensions. That is, along each and 
every dimension, the set either spans all values or has only 
one value—similarity within that dimension. In general, 
a valid set will span some dimensions and have similarity 
for others. Note that for any 2 cards, there is exactly 1 card 
that completes the set. As an example, in Figure 1A, the 
rectangles around 3 cards identify a set. There are two 
other sets present in these 12 cards. Can you find them?

Is playing the Set game a perceptual or a cognitive task? 
At first thought, since the game depends on viewing col-
orful geometric elements, it might be thought to be a per-
ceptual task. In fact, the commercial version is called “The 
Family Game of Visual Perception.” But this is a naive 
view, since the determination of whether cards form a set 
is a conceptual matter. Thus, the real question is whether 
the task is purely cognitive or whether there is also a per-
ceptual element (other than the trivial aspect that we need 
to perceive the cards before we can perform the cognitive 
processing required to determine which constitute a set). 
That is, do perceptual characteristics influence the con-
ceptual detection of a set (Goldstone & Barsalou, 1998)? 
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As has already been pointed out, the Set game depends on 
detection of a mixture or combination of similarity and 
span. In the dichotomy or continuum between conceptual 
and perceptual processes, it would seem that similarity is 
more perceptual and spanning is more conceptual. That is, 
as the Gestalt psychologists pointed out, similar elements 
are naturally and quite automatically grouped together 
perceptually. One of the questions that we address here is 
whether there is an equivalent mechanism that automati-
cally groups elements that span a dimension.

Another aspect of the Set game is its relationship to the 
general task of categorization. Categorization is the relating 
of objects or elements that differ in irrelevant ways, be-
cause they are similar in those features that are deemed rel-
evant. Rosch and Mervis (1975) based their very definition 
of basic-level categories on maximizing similarity among 
category members, together with maximal dissimilarity 
between members of different categories, but some differ-
ences must remain among members of the same category 
or they would be identical. Bower and Trabasso (1963) ana-
lyzed performance of a concept identification task—where, 
again, one or more dimensions are relevant and others are 
present but irrelevant—and showed that in this rule-based 
task, subjects show all-or-none learning of potential rules 
(i.e., they “try” one rule at a time, sequentially testing the 
relevance of each dimension), rather than using all the in-
formation presented to them (by experimenter feedback).

Another well-studied example is the Wisconsin card 
sorting task (WCST; Berg, 1948; Grant & Berg, 1948; 
Heaton, Chelune, Talley, Kay, & Curtiss, 1993), a very 
simple categorization task in that only one dimension (of 
three possible) is considered relevant at any time (with the 
subject’s task being to find that dimension as it changes 
occasionally). In the Set game, too, cards must be associ-
ated on the basis of their similarity in some dimensions, 
despite their dissimilarity in others. The tasks are also 
similar in that they have common dimensions, with sev-
eral possible values for each: The WCST has three dimen-
sions (color, shape, and number, with four values along 
each dimension); the Set game has these same dimensions 
plus the additional dimension of filling (bringing the total 
to four dimensions, but here with three values along each). 
The Set game includes an added complication in that the 
number of dimensions for which there is similarity is not 
announced in advance and may change from display to 
display. But variability is inherent in the WCST, too, since 
the choice of which dimension is relevant changes from 
time to time without prior notification. For both tasks, 
there is a binary rule for each dimension and for each 
trial: Subjects decide which dimension is currently rel-
evant versus irrelevant to the WCST (only one is relevant 
at each time) or which reflects similarity versus span for 
the Set game. Thus, in both cases, the subject must be 
ready for change and must not stick to old habits; both 
tasks require flexibly adjusting which cues are important 
in the environment. However, in the Set game, feedback is 
not essential for playing correctly, whereas in the WCST, 
the task relies on feedback. Another important difference 
between the WCST and the Set game is that the goal in 
the first is to match a card (a sorting task) and the goal in 

Figure 1. (A) The four-dimensional three-value Set game. The 
goal is to identify a set, defined as three cards, all of which are dif-
ferent (span) or alike within each dimension, independently of the 
other dimensions. Class is defined as the number of dimensions 
spanned within a set. The marked cards form a set of class 3; that 
is, they are all blue and span the dimensions of shape, number, and 
filling. There are two more sets in the display. Can you find them? 
The numbers above the cards are for identifying their location in 
the article; they did not appear in the actual task. The most abun-
dant values (MAVs) in this display are red, wave, two, three, and 
empty, all with a group size (MAV-GS) of five. (B) Display demon-
strating the four classes. Class 1 Cards 3, 5, and 11 span the colors, 
but all contain two (number) filled (filling) ellipses (shape). Class 2 
Cards 1, 5, and 12 span the colors and shapes, but all contain two 
filled items. Class 3 Cards 4, 6, and 12 span the colors, shapes, 
and filling, but all contain two items. Class 4 Cards 4, 8, and 10 
span all four dimensions (i.e., the cards contain exactly one each 
of all the possible values of each dimension). In this display, the 
MAV is the number two (cards with two items), with a MAV-GS 
of eight. (Note that in all, nine cards are included in the four sets, 
due to overlapping sets—i.e., cards belonging to more than one 
set.) (C) Generalization version of the game with new values. Sets 
in the display: Cards 1, 4, and 9 (class 2), 4, 5, and 11 (class 2), 1, 2, 
and 3 (class 3), and 1, 5, and 10 (class 4). If one of the first two sets 
seems to you to contain more similarity than the other, this may 
hint at your individual dimensional salience (see below, Experi-
ment 2). The most abundant value here is three, with a group size 
of 7. If turquoise (6) or circle (6) seems to you more abundant than 
the number three, this may hint that the color or shape dimension 
is more salient than the number dimension. The additional sets in 
panel A are Cards 6, 7, and 8 (class 3) and 3, 6, and 9 (class 4).
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Ahissar, 2002; Oliva & Torralba, 2006; Schyns & Oliva, 
1994) and preattentively let the sets pop out. Thus, the Set 
game provides a window to a “solved” problem, one with 
a creative solution, that is, for the time being, beyond our 
comprehension. Our approach includes psychophysical 
experiments and combinatorial analysis. In Box 1, we pre-
sent general combinatorics for the Set game.

In Experiment 1, the subjects played the game, and we 
recorded their choice of cards and timing of performance. 
We found that the subjects preferred sets of lower class, 
and we analyzed set perceptual parameters that affected 
set cognitive search strategy, which set was detected 
(when more than one was present), and the speed of its 
being detected, in terms of response time (RT). These in-
cluded number of sets present in the display, abundance of 
different values, place effects, and influence of previous 
card locations.

In Experiment 2, we used another experimental para-
digm to determine the relative salience of different dimen-
sions present in the Set game—in a subject-by-subject 
manner. The results were compared with the prevalence 
of these dimensions or values in sets found by the same 
subjects when they played the Set game.

In Experiment 3, we tested the dynamics of learning 
effects following experience with the game. Training im-
proved performance dramatically in terms of speed of 
detecting sets. We also tested the effect of training with 
one version of the game on performance with a different 
version (new values along the original dimensions; see 
Figure 1C)—that is, the degree of learning generalization 
and transfer of learning effects. That is, after training has 
improved performance, will changing stimulus values 
start learning all over again, or is the ability to identify a 
set now established, involving higher cortical level mech-
anisms regardless of specific lower level stimuli (Ahissar 
& Hochstein, 1997, 2004; Hochstein & Ahissar, 2002), so 
that search with new values is performed immediately at 
the lower, posttraining RT?

EXPERIMENT 1 
Playing the Set Game

Method
We implemented the Set game with an interactive computer pro-

gram, allowing us to record subject moves and RTs. On every round 
of the game, 12 cards were displayed, always including at least one 
set. The subjects were instructed to mark (via mouse clicks) three 
cards that formed a set as quickly as possible but to try to avoid 
mistakes. If the three chosen cards indeed formed a set, a Continue 
button appeared. Upon pressing of the Continue button, three new 
cards were dealt in place of the three marked set cards, and a new 
round began. The replacement cards were taken from the remaining 
“deck,” with the used set cards being excluded. During the round, 
if a player changed his or her mind after marking fewer than three 
cards, the player could “unmark” the cards by a second mouse click. 
In case the player chose three cards that did not form a set, a “try 
again” message appeared, along with an explanation of why the cho-
sen cards did not form a set (e.g., “Two are blue and one is red”). If 
10 such mistakes occurred, the set was revealed, and the round was 
counted as unsuccessful. RT was measured from the pressing of the 
Continue button until the third card of a set was chosen; the subjects 
were informed of this timing procedure. This process continued, 
going from round to round, until the entire deck had been used, com-

the second is to detect three cards according to the given 
rule. The most important aspect of similarity in the two 
tasks, however, may be the one described in the preceding 
paragraph—namely, that both are inherently conceptual 
tasks with a large degree of perceptual influence.

Thus, the Set game may be seen as a categorization task 
in that subjects have to find three cards that belong together, 
with similarity and dissimilarity along different dimensions. 
But Set qualification requires adherence to another rule that 
is added to the usual similarity requirement: In every di-
mension for which there is not full similarity, there must be 
full spanning; that is, the set cards must all be the same—or 
all different—for each and every dimension. In no case may 
there be two cards that share one value (say, red) and a third 
card that differs from them (say, blue). Set recognition is a 
difficult task because the number of relevant dimensions 
for which similarity must be found is unknown (and may 
even be zero) and the other dimensions are not simply ir-
relevant but need to span the possible values. Adding this 
simple requirement changes the nature of the task, and the 
ways in which it does so is the theme of this article.

In regard to detection of similarity versus spanning along 
the different dimensions, we introduce the term class as the 
number of dimensions spanned within a set. To elaborate, 
there are different types of sets, having different numbers 
of dimensions imposing similarity. We regard the comple-
mentary number, the number of dimensions fulfilling the 
criterion of difference (i.e., spanning all the values along 
that dimension), as the class of the set. Therefore, the class 
of a set represents the degree of dissimilarity within the 
set. For example, in Figure 1A, the marked set belongs to 
class 3, as does also the set of Cards 6, 7, and 8; the remain-
ing set (Cards 3, 6, and 9) is of class 4. In Figure 1B we pre-
sent a display that is designed especially to include one set 
of each class (see the figure caption). One of our goals is 
to determine whether players have a preference for sets of 
lower or higher class—that is, whether the ease of detecting 
a set depends on its degree of similarity (Tversky, 1977).

For a general game of n dimensions, there are n dif-
ferent classes, 1 . . . n. Thus, in the original game, there 
are four classes, numbered 1–4. There are no sets of class 
zero, because, by definition, this would mean that they are 
similar on all dimensions, or identical, which is not pos-
sible, since there are no repeat cards in a pack.

Various strategies may be used to find sets (see Holy-
oak, 1990, on problem solving). There are the obvious, 
exhaustive search strategies, of choosing each possible 
pair of cards and checking whether a complementary third 
card is present in the display or choosing each possible 
group of three cards and checking whether they form a set. 
These strategies require 220 (  12

3 ) operations, which a 
computer program does most easily but is not realistic for 
humans (see an alternative strategy in Box 1).

Obviously, there must be other strategies as well. Thus, 
although the task is easy from an algorithmic point of 
view and is readily solvable by a computer program, the 
exhaustive search strategy is not the way that the human 
brain computes and reaches a solution (see Ullman, 
1984). Ultimately, the best strategy may be not to use a 
strategy but to catch the gist of the scene (Hochstein & 
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(9 in one session with 1 or 2 games, 1 in a session with 3 games, and 1 
in two sessions). In total, 22 subjects played 125 games, including 
2,844 rounds—that is, displays and sets chosen. We eliminated the 
1st round in each game because of its exceptional conditions (the sub-
jects had not previously seen any of the cards, whereas on subsequent 
rounds only 3 cards were new). We also disregarded outlier rounds 
with exceptionally long RTs (setting a bound at the mean RT plus 
three times the global standard deviation); 2,664 rounds remained. In 
9% of the 2,844 rounds played, the subjects marked 3 wrong cards and 
were informed they did not form a set; in 11%, they marked 2 cards 
and then “unmarked” them (including overlapping rounds).

MATLAB was used for experimental control, data collection, and 
analysis. We measured RT from display presentation to choice of 
the third card completing a set, tracking cards, the detected set, and 
other available sets and their positions, deriving the dependence of 
preference on the following parameters: similarity (set class), num-
ber of sets present in the display, the most abundant value present, 
the distance of set cards from each other and their location in the 
display, and the relationship of cards chosen to cards just revealed 
(i.e., locations used in the preceding set).

pleting a game. Note that in our version of the game (but not in the 
original), we never presented a display without any set.

Before beginning to play the game, the subjects read an explana-
tion of the task and the definition of a set. They were shown a sample 
display with one set marked (as in Figure 1) and were asked to find 
another set in the display (as you may do in Figure 1). Incorrect 
responses were explained, so that the subjects would understand the 
nature of a set and that a set might not contain two cards that were 
similar along any one of the four dimensions (e.g., two cards with 
striped elements) and only one card that was different on this dimen-
sion (e.g., one card that had filled elements). The experimenter veri-
fied that they understood the rule before starting the first session.

The subjects participated in several sessions, each lasting about an 
hour, in which they played several games, as time permitted (according 
to their individual performance level). Each game included up to 24 
rounds (the maximal number in an 81-card pack, displaying 12 cards 
and replacing 3 each round). Sometimes there were fewer rounds, to 
avoid occurrences of displays without a set. Eleven subjects partici-
pated in three sessions, each playing 3–6 games per session (following 
the first, slower session); another 11 participated in fewer sessions  

BOX 1 
Combinatorics: General

Combinatorial analysis of the Set game is presented in the relevant parts of the article, revealing a num-
ber of game characteristics and explaining individual performance heuristics by comparing behavior with 
task parameter distributions. Here, we will give only a preface to the combinatorics.

We denote the number of dimensions as d, and the number of values along each dimension as v. Note 
that v is the size of a set, and d may be considered the complexity of the game.

The total number of (different) cards is vd  34  81 in the regular case of a four-dimensional three-
valued game. Each combination of two cards uniquely defines a third card for a set, and there is a third card 
that constitutes the set for any two: There is one and only one card completing a set. This can be elaborated 
by a vector representation, as follows: Each card is represented by a four-dimensional vector, and in each 
dimension it receives one of the three possible values. Two cards, for instance, can be [3, 1, 2, 1] and [2, 1, 
2, 3]. The vector of the third card of the set is constructed by the following rule: If the two cards have the 
same value for a certain dimension, use this value also for the third card; if the two cards have different 
values, use the complementary value. This will always lead to a unique and existent card. In the case of the 
two cards mentioned above, the third is [1, 1, 2, 2]. The number of all possible sets is (81 80)/3!  1,080, 
since there are 81 possibilities for choosing the first card, one less (80) for choosing the second, and only 
one way of completing the set. Division by (3!) excludes repetitions.

Number of Triplets in the Display
As was mentioned above, the number of possible choices of 3 cards out of 12 is 12

3   220. An alterna-
tive calculation, choosing 2 cards at a time and verifying that the complementary 3rd is present sums to the 
same number of operations as follows. Choose the first 2 cards and verify whether any of the other 10 cards 
will complete a set (10 operations). Then, in the inner loop, increment the 2nd card to the 3rd in the display 
(thus now choosing the 1st and 3rd), leaving 9 cards for verification. Continuing the inner loop results in a 
decreasing arithmetic series (10 . . . 1) of operations. Now for the outer loop, increment the 1st card to the 
2nd in the display, repeating again the inner loop, this time from the 3rd card, giving a decreasing arithmetic 
series (9 . . . 1), and so on. Thus, the entire process yields 10

m 1
m
n 1

n  220 operations.

An Alternative Strategy for Finding a Set
In the introduction, we referred to possible exhaustive search strategies for finding sets. An alterna-

tive strategy is called dimension reduction. The idea is to choose a dimension (preferably the one that 
is perceived as most dominant for the player, or one with the most abundant value). On this dimension, 
denote the three values as x, y, and z. Look at all the cards along this dimension that have the value x, and 
among them search for a set. This dimension is thus set to be fixed, reducing the number of dimensions 
by one; that is, the set will have similarity on this dimension with the value x assigned to it. If no such 
set exists, move on to y and then to z. If, in all cases, no set is found, the conclusion is that the set must 
span this dimension. So choose the next salient dimension and repeat the process, now looking always for 
cards spanning the previously chosen dimension(s). If the game is four-dimensional, it is usually enough 
to reduce one dimension (no need to set two dimensions at a time to be fixed), because it is perceptually 
quite easy to find a set in three dimensions, especially within the smaller group of cards. This strategy is 
especially relevant to the impact of the most abundant value, described below.
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pirical distribution of rounds (gray bars) and occurrences 
(white bars) of sets of different classes, and in Figure 2C, 
in which we show the number of detected sets as a fraction 
of these distributions.

Another way of testing preference for sets of differ-
ent classes is to analyze the relative place of chosen sets 
among available sets on that round. We plot the proba-
bilities that a set would be chosen when there were other 
sets present on that round of either lower (Figure 2D) or 
higher (Figure 2E) class (the abscissa reflects the num-
ber of sets present on each round from classes that were 
lower or higher than the one chosen, and the ordinate is 
the number of occurrences of such choices, normalized to 
the number of opportunities for such a choice—i.e., the 
number of rounds on which it was possible to choose a 
set and leave that number of sets of lower or higher class). 
Note that Figure 2E is flat, reflecting an equal probability 
of leaving any number of higher class sets: The players 
were indifferent to the presence of higher class sets. In 
contrast, Figure 2D declines with the number of lower 
class sets. Taken together, these graphs demonstrate a 
preference for lower class sets—that is, for sets with more 
similarity. We conclude that sets are found on the basis of 
a similarity-detecting process—presumably, a basic per-
ceptual mechanism.

Recent results in the realm of categorization also point 
to the use of underlying mechanisms that perceive simi-

Results and Discussion
Similarity

As was mentioned in the introduction, we were inter-
ested in the impact of the class of a set on the speed with 
which it was detected, as well as the choice of it over sets 
of other classes when more than one class was present. 
Figure 2A shows mean RT ( SE) by class. On average, 
the lower the class, the shorter were the RTs. Figure 2B 
(black bars) shows the number of sets detected from each 
class. Clearly, more sets were detected for higher class sets 
(up to class 3). Does this trend reflect a true preference on 
the basis of set class, or does it simply reflect their abun-
dance? To answer this question, we compute how many 
sets of each class are available in Box 2.

Consider the results of Figure 2B, looking at the sets 
detected from each class, but now taking into consider-
ation the relationships among the number of sets available 
of each class. Only twice as many sets were detected from 
class 2 as from class 1, even though combinatorially there 
are 3 times as many sets from class 2. Class 3 sets were 
detected just slightly more often than those of class 2, al-
though there are 1.33 times as many such sets of class 2 
(4 times the number of class 1 sets). Class 4 sets were 
detected slightly less often than those of class 1, although 
there are twice as many such sets. Thus, there seems to 
have been a preference for lower class sets. This is also 
demonstrated in Figure 2B, in which we show the em-

 

BOX 2 
Combinatorics: Division Into Classes

The general equation for the total number of sets of class i, with d dimensions and three values, is

 

3 2
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there are 3d possible choices of the first card, d
i  possibilities to choose which i dimensions to change for 

the second card, and 2i variations of changing the i dimensions. The third card is determined uniquely by 
the first two, and 3! again excludes repetitions.

Summing over i, this expression gives the total number of sets, [3d  (3d  1)]/3!. In particular, for d  4,

Number of class 1 sets:
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Note that these numbers sum to 1,080  (81 80)/3!.
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Figure 2. Influence of similarity on set detection, with data for 22 subjects, 
125 games, and 2,664 rounds: The effect of the class of a set (number of di-
mensions with span, rather than similarity) on detection speed, as well as on 
its preference over sets of other classes when more than one set of different 
classes was present. (A) Mean response times (RTs) for detecting a set by class 
number; error bars here and in the other figures are the standard errors of the 
mean (SEMs). (B) Distribution by class of detected sets (black bars), number of 
rounds in which such sets appeared (gray), and total number of appearances 
(white), including possibility of more than one set in a display. (C) Set detections 
by class as a fraction of rounds (solid curve; black/gray bars in panel B) and 
as a fraction of total appearances (dashed curve; black/white bars in panel B), 
both showing a decrease as the class increases. For comparison, we show the 
chance probability (dotted curve) of choosing each class (which follows the 
pattern calculated by the combinatorics in Box 1). (D and E) Order of chosen 
sets among all available sets, demonstrating preference for sets of lower classes. 
Only (1,866) cases with at least two sets from different classes were included. 
(D) Number of choices of a set as a function of the number of lower class sets 
present on that round, normalized to the number of opportunities for such a 
choice. (E) Normalized number of choices as a function of higher class sets 
pres ent. The decreasing distribution for lower class sets and the independence 
of higher class sets support a preference for finding lower class sets. 
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to synergistic neural summation (rather than their being 
independent), the result will be an enhanced redundancy 
gain, which is greater than simply probability summation. 
On the other hand, there can be interference between the 
processes. These properties will be true both for perfor-
mance accuracy (Graham, 1989) and for RT (Raab, 1962). 
We extend the horse race model to N processes and apply 
this model to set detection; thus, we view the different 
sets present in a display as competing with each other to 
reach detection.

We wish to derive a theoretical graph describing mean 
RT versus the number of sets present in the display, as ex-
pected by probability summation—that is, the horse race 
model—and to compare it with the empirically measured 
RT dependence. As a first step, we measure the empirical 
(binned) distribution of RTs, p(t), for detecting a set when 
only one set is present in the display. This is shown in the 
upper left curve of Figure 3B. The horse race model pro-
cedure is then to assume that the time for detecting either 
of the sets when there are two available is the minimum of 
the times for detecting each. Thus, the new RT distribu-
tion for two sets is formed by taking a pair of time bins, 
t1 and t2, having individual probabilities, p(t1) and p(t2), 
with a joint probability of p(t1) · p(t2), and assigning it to 
the time bin of the minimum of t1 and t2. The mean RT ac-
cording to the horse race model, when there are two sets, 
will then be
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By induction, the same procedure is used to derive the RT 
distribution when there are three or more sets present and, 
from these, the expected mean RT for each number of sets. 
If the processes are indeed independent, the observed RT 
distribution will fit this theoretically created distribution; 
if there is neural summation and, therefore, enhanced re-
dundancy gain, there would be a shift to the left in the ob-
served distribution (shorter RTs); if there is interference, 
there would be a shift to the right (slower responses).

Experimental results are compared with predictions of 
the horse race model in Figures 3B and 3C. We find a 
good fit between the empirical results and the model pre-
dictions, suggesting that the model can account for our 
results. The implication of the success of the horse race 
model is independence (rather than synergy or interfer-
ence) of the processes of detecting each set when there is 
more than one present.

Most Abundant Value
The relative abundance of the values along each di-

mension within the array of 12 cards presented on each 
round may influence which set is chosen and the RT for 
finding it. We are particularly interested in the cards be-
longing to the largest of these groups of values, which 
we call the most abundant value (MAV), and the num-
ber of cards in this group, called the MAV group size 
(MAV-GS). Since similarity was shown to be easier to 
perceive, it may be that subjects search among the cards 
that belong to the largest group with the same value along 
one dimension— that is, the cards that share the MAV. 

larity. It was found that the learning of categories is easier 
and more natural when one learns from exemplar pairs that 
belong to the same category than when one learns from 
pairs that belong to different categories (Hammer, Hertz, 
Hochstein, & Weinshall, 2005, 2007, in press), even when 
the pairs are preselected to contain the same amount of 
information. In addition, children are even more biased 
toward learning from same-class pairs (Hammer, Diesen-
druck, Weinshall, & Hochstein, 2008). Similarity is also 
the basis of Gestalt principles of grouping (Koffka, 1935; 
Köhler, 1929). Although the Set game is not a usual cat-
egorization task or a standard grouping phenomenon, it is 
interesting to speculate that the same basic mechanisms 
may underlie all these processes. In the introduction, we 
compared Set detection with the WCST and the concept 
identification task. Despite the differences mentioned 
there, the many similarities between these tasks in terms 
of the perceptual dimensions used and, more significantly, 
the need to choose which dimensions are relevant for any 
particular trial and to repress this choice for the following 
trial suggest that the same similarity-detecting mechanism 
may play an important role in all these tasks. This congru-
ence of findings suggests that despite the cognitive nature 
of the tasks, perceptual mechanisms play an important and 
essential role.

Finally, it is worthwhile noting that the preference for 
similarity was not learned during the game, because, in 
the game itself, there was actually a greater abundance 
of higher class sets (see Figure 2B). Thus, the bias to-
ward detecting lower class sets must reflect an innate or 
prior preference, perhaps stemming from the tendency for 
real-world categories to be organized around similarities, 
rather than around differences.

In summary, we found that sets from lower classes were 
detected more quickly and recognized more often (rela-
tive to their availability)—that is, with priority when more 
than one set was present—suggesting that greater similar-
ity is a factor in set detection.

RT by Number of Sets Present
An obvious parameter that might have influenced the 

speed of detecting a set is the number of sets simultane-
ously present in the display, although the subjects were 
not informed of this number. Calculation of the expected 
distribution of number of sets is nontrivial, so we deter-
mined the empirical distribution in our experiment, as 
displayed in Figure 3A. Recall that in our experiment, we 
rejected displays without sets, although the original game 
does not.

Horse race model (theoretical analysis). The horse 
race model (Miller, 1982, 1986; Raab, 1962; Townsend & 
Ashby, 1983) deals with processes that compete with each 
other. When there is more than one stimulus competing 
for our attention, the result can be performance facilita-
tion according to probability summation (Graham, 1989; 
Monnier, 2006), resulting from the processes being inde-
pendent (Corballis, 1998; Monnier, 2006). Another term 
for that same phenomenon is redundancy gain (Corballis, 
1998; Egeth & Mordkoff, 1991; Garner & Lee, 1962). 
Alternatively, on the one hand, if the processes give rise 
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Figure 3. Influence of number of sets simultaneously present in the 
display, comparing experimental results with predictions of the horse 
race model. (A) Empirical distribution of the number of sets in the dis-
play (for the 2,664 rounds; recall that in the experiment, displays con-
tained one or more sets). (B) Observed (solid blue) and expected (dashed 
red) response time (RT) distributions according to the horse race model 
for one to six sets present. As a first step, we measure the empirical dis-
tribution of RTs for detecting a set when only one set is present in the 
display (upper left curve). From this, we derive the expected distribution 
of RTs for two sets (see the text). By induction, the same procedure is 
used to derive the expected RT distribution when there are three or more 
sets present. (C) Mean RT by number of sets in the display, observed and 
expected. Compare the experimental results with the horse race model 
predictions—that is, performance facilitation according to probability 
summation, indicating independent processes. The alternatives, neural 
summation (enhanced redundancy gain) or interference, would have 
resulted in a shift of the graphs to the left or the right, respectively. The 
results show neither of these effects but, rather, a good fit to the model 
predictions, suggesting independence of search for different sets.
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in accord with the computed distribution in Figure 4A). 
The most common MAV groups are of six and seven 
cards. Within this MAV-GS distribution, those groups 
that included sets (2,251 of 2,664 rounds; 84.5%) are 
distributed as plotted in Figure 4B (dashed curve). The 
distribution of  MAV-GS within which a set was actually 
detected by the player (1,619 of 2,251 rounds; 72%) is 
shown in Figure 4B (solid curve).

Now we average the fraction of rounds for each game in 
which the subjects detected a set among the MAV cards, 
out of the number of rounds in which such a set was pres-
ent (Figure 4C, solid curve; error bars indicate standard 
errors). An almost monotonic increase is observed. That 
is, there was a trend for the number of discovered sets to 
increase within the MAV group as its size increased. This 
finding seems to suggest that the presence of more cards 
in the MAV group leads to a better probability of detecting 
a set within it. However, this may be misleading, since we 
should consider only cases in which there was a choice. 
Perhaps when the MAV group is large, that value is so 
dominant that there is no set without similarity in it. In this 
spirit, we add the corresponding chance level of finding a 

For example, in Figure 1B, the MAV is the number two 
(i.e., cards with two items) with a MAV-GS of eight (i.e., 
there are eight cards with two items; Cards 3, 5, and 11, 
Cards 1, 5, and 12, and Cards 4, 6, and 12 form sets from 
within the MAV group; Cards 4, 8, and 10 form a set 
outside the MAV group); in Figure 1C the MAV is the 
number three, with a MAV-GS of seven (Cards 4, 5, and 
11 form a set from within the MAV group; Cards 1, 2, 
and 3, Cards 1, 4, and 9, and Cards 1, 5, and 10 form sets 
outside the MAV). In Figure 1A, the MAV-GS is five, 
and there are several groups with this size sharing some 
value: red (Cards 6, 7, and 8 form a set within this MAV 
group), wave, two, three, and empty.

Reviewing these terms, MAV refers to the most abun-
dant value itself, a MAV group is the group of cards with 
that (most abundant) value, and MAV-GS is the actual size 
of the group.

In Figure 4, we demonstrate the stages in determin-
ing whether sets among the most abundant cards are 
preferred. In Box 3 we derive the theoretical MAV-GS 
distribution shown in Figure 4A (solid curve). Figure 4B 
shows the empirical MAV-GS distribution (dotted curve; 

BOX 3 
Combinatorics: Distribution of Most Abundant Value Group Size (MAV-GS)

In any dimension, the cards on display may include one, two, or all three values, so that the group of 
cards with a particular value of a particular dimension may include anywhere from 0 to 12 cards. Calcula-
tion of the combinatorial statistics of occurrences of each MAV-GS is done according to the following 
equation, stating the probability of having three groups of sizes k, l, and (n k l ) out of n cards:

 

n
k l n k l

n
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This is a probability, so that the sum of all possible distributions is 1. To satisfy this constraint, the first 

part of the following function (the factorials) must sum to 3n. For example, for n  12, the sum must be 
312  531,441, as it is.
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We construct all possible series of three groups in the display, with the total number in the three groups 

summing to n, the number of cards in the display; for example, for 12 cards, the following series would 
exist: (12, 0, 0), (11, 1, 0), (10, 2, 0), (10, 1, 1), and so on. Each series can appear, in a permutation, one, 
three, or six times (when there are three, two, or no repeated values, out of three, respectively); for ex-
ample, the series above would appear three, six, six, and three times, respectively. The probability of each 
series is calculated by the equation above (with n being 12, and k and l representing two out of the three 
group sizes), multiplied by the number of permutations. Taking the largest value in each series and sum-
ming the probability of the related series yields the probability of each MAV-GS (the number of cards in 
the most abundant group), but only in one dimension (Figure 4A, dashed curve).

To calculate the probability for each MAV-GS when there are four dimensions, we construct a series 
of largest values for each dimension. Then we calculate the probability of each such series, according to 
the previously calculated probability of each value, and accumulate this to the probability of the largest 
value in the series (similar to the calculation for the shortest RT in the horse race model). Now we have 
the probability vector of each MAV-GS for four dimensions (Figure 4A, solid curve). The graph shows a 
shift to the right when the number of dimensions is raised, because the probability of having a low value as 
the most abundant in all dimensions becomes less likely the more dimensions there are. Each probability 
vector of course sums to 1.

A group of three of the same value cannot be the largest such group, because then there will be a group 
of at least (12 3)/2  4.5, meaning of at least five. Although the most abundant value can be a group 
of four cards, because the cards in a certain dimension can be divided into 4–4–4 groups of values, the 
probability of this occurring actually approaches zero, since this 4–4–4 division would have to apply to 
all four dimensions.
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Figure 4. Most abundant values (MAVs). (A) Theoretical distribution of MAV 
group size (MAV-GS) of values, in one dimension only (dashed line) and in four 
dimensions (solid line); see the text (Box 3) for derivation. With more dimensions 
present, there are more chances for larger group sizes to appear. (B) Empirical 
MAV-GS distribution (dotted curve, similar to the theoretical distribution in 
panel A), distribution for largest groups including a set (as occurred on 2,251 of 
2,664 rounds, 85%; dashed curve), and distribution for largest groups includ-
ing a detected set (as occurred on 1,619 of the 2,251 rounds above, 72%; solid 
curve). (C) Mean fraction of rounds over all games in which subjects detected 
a set among the MAV cards, out of the rounds with such a set (solid curve), 
as compared with chance level (dashed curve), calculated (for each MAV-GS 
separately) by averaging the fraction of MAV sets from the total number of sets 
in the display, over all rounds. Actual findings are somewhat above the chance 
level, implying preference for detecting sets within the MAV group. (D) Mean 
response times (RTs) for detecting sets for four cases: when there was a set 
within the MAV and outside it (solid curves) and the detected one was within 
(black squares) or outside (gray diamonds); when there was a set only within 
the MAV (dashed black curve, squares) or only outside it (dashed gray curve, 
diamonds). Shorter RTs for sets within the MAV suggest that subjects show a 
preference for these more salient cards. Declining RTs with increases in MAV-
GS suggest that MAV salience increases with group size.
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MAV group (solid black curve, squares) or outside it (solid 
gray curve, diamonds). Note that RTs are shorter for sets 
within the MAV group and that they decrease with increas-
ing size, implying that the task becomes somewhat easier 
as the MAV-GS increases. We interpret these results as 
deriving from a preference in searching within the MAV 
group, so that sets there are detected more quickly. There 
are longer RTs for detecting sets outside the MAV group, 
not influenced by group size. Presumably, subjects waste 
time looking for a set within the MAV (so a set is detected 

set within the MAV group (dashed curve). Experimental 
findings follow the chance-level increase with increased 
MAV-GS but are always somewhat above the chance level, 
suggesting that subjects indeed look preferentially within 
the MAV group, no matter what its size.

We also examined mean RT of detecting sets for dif-
ferent MAV-GSs, as plotted in Figure 4D. We examined 
four cases and compared them pairwise. When there is a 
set within the MAV group and another outside it, we can 
compare RTs when the detected set is entirely within the 
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Figure 5. Supplementary task asking subjects to detect, “What is the most 
abundant value?” (A) Presentation of values for subject choice, following pre-
sentation of regular display of 12 cards (as in Figure 1). Each subject performed 
40 rounds of this task. (B) Average results for 4 subjects as a function of most 
abundant value group size (MAV-GS): Number of correct answers (solid curve), 
as compared with number of occurrences (dashed curve) and with chance level 
(dotted curve), taking into consideration that several values can be MAVs in 
the same display. (C) Correct answers as fraction of distance from chance to 
number of occurrences of this MAV-GS, calculated by (x x0)/(xmax x0), 
where x  hits, x0  chance, and xmax  presence. Thus, subjects had a good 
notion as to which was the MAV and could have used this information in play-
ing the real game.
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displays. Nevertheless, even though the MAV might not 
have been declared correctly (in the supplementary experi-
ment), this still does not mean that this information was not 
used (even if unconsciously) for directing and speeding 
up set detection, as was found above. There is a difference 
between using information and being able to report it.

Place Effect
Do subjects find sets with cards close to each other more 

quickly and more often than they find sets with cards that 
are far from each other? As the total distance between the 
three cards of a set, we used the sum of the three Euclidian 
distances between each of the three pairs in the set (i.e., the 
triangle perimeter), as demonstrated in Figure 6A, in terms 
of the (vertical or horizontal) unit distance between adja-
cent display locations. There are 24 discrete distances.

Figure 6B shows the combinatorial (dashed line) versus 
the actual detection (solid line) probability of appearance 
of each distance. They show a very good fit. When they are 
plotted one versus the other (Figure 6C), the regression line 
has a slope of 1. We conclude that there was not much effect 
of the distance between cards (or the frequency of a particu-
lar distance). In addition, we find that there was no depen-
dence of mean RT on distance (not shown). Taken together, 
these results suggest that subjects are able to perceive many 
cards at a single glance or that the order of scanning was 
hopping from place to place (perhaps on the basis of an at-
tribute) and not necessarily to contiguous regions.

Influence of Location in the Display
Are there favored locations, which are more easily per-

ceived by subjects? We analyzed the influence of a set in-
cluding one (or both) of the two central locations. Figure 7A 
shows the frequency with which subjects actually chose a 
set with a card in each of the 12 locations (when there was 
more than one set in the display). As can be seen in the fig-
ure, the two central locations were slightly favored.

Figure 7B shows the frequency of choosing a set with 
a card as a function of the card’s distance from the center 
of the display. There was a small, although nonsignificant, 
dependence, so that locations further from the center were 
favored less. We conclude that only the very central loca-
tions are somewhat favored.

Influence of Previous Set Card Locations
We wished to ensure that the locations of the cards in-

cluded in the previously detected set did not affect trig-
gering of the next set. More attention may have been paid 
to these locations because, here, the cards were replaced 
with new ones, while others remained from the preceding 
trial. On the other hand, other cards were already familiar, 
so that less attention may have been paid to the new cards. 
On the basis of 2,664 rounds, in .89 of the cases (2,372 
rounds), there was a set that included one or more of these 
replaced card locations. This resembles the theoretical 
probability of .88, which we derive in Box 4.

Of these 2,372 rounds, in .506 of the cases, there ex-
isted at least one additional set, not including any previous 
location. We will consider only these 1,201 cases in which 
the subjects had a choice.

outside the MAV only when it “can match the competi-
tion” of those inside). The MAV group itself may be more 
salient when it is larger. These suggestions are reinforced 
by comparing RTs when there is a set only within the MAV 
(dashed black curve, squares) or only outside it (dashed 
gray curve, diamonds). Again, for sets within the MAV 
group, RT decreases with increases in group size—that is, 
with MAV salience. As for sets outside the MAV group, RT 
increases with increases in group size (rather than being 
flat, like the solid gray curve). This increase may hint at 
search tactics, implying that the MAV cards distracted the 
search, by attracting attention to them, and only when a set 
was not found among them was a further search made.

We conclude that subjects preferentially search for sets 
within the MAV group, especially when the MAV-GS is 
large. Detecting a set within the MAV is faster than detect-
ing one outside the MAV. Since a MAV group is a group 
of cards that are similar in a certain value, the larger the 
MAV-GS, the greater the degree of shared similarity, in 
the sense that there are more possible triplets with this 
dimensional similarity. This result therefore confirms the 
preference for similarity.

Perception of the MAV. In order to determine whether 
using the MAV is at all a feasible strategy for finding a 
set, we performed a supplementary experiment, testing 
the accuracy of detecting and reporting what is the MAV. 
This experiment was performed only after the subjects 
had played the regular game, in order not to influence the 
way in which they would play the game.

Twelve cards were displayed, as in the Set experiment, 
except that here, the display lasted only 5 sec. The task 
was to state which value was the most abundant. After the 
display disappeared, the 12 possible values were presented 
(as shown in Figure 5A), and the subject chose one, with-
out time limitation. After the choice was made, another 
12 cards were shown, with all the cards replaced (and not 
only 3, as in the regular game), so that the abundance of 
the values was entirely refreshed. Each subject performed 
40 rounds of this task.

Average results for the 4 subjects are shown in Fig-
ure 5B. For each MAV-GS, we plot the average number of 
correct answers (solid curve), the average number of oc-
currences of this MAV-GS (dashed curve), and the chance 
level for correct answers (dotted curve), taking into ac-
count that several values could be the most abundant in the 
same display (thereby increasing the chance that one of 
them would be chosen). The average over subjects of cor-
rect answers is 22.25 (56%), nearly double the chance level 
of performance, which is ~12.5% (5/40) in total. Figure 5C 
shows correct answers as a fraction of the distance between 
the other two, by calculating (x x0)/(xmax x0), where 
x, x0, and xmax are the measured correct answers, chance 
level, and total occurrences for each MAV-GS, respec-
tively. There is a major increase from a MAV-GS of 5 to a 
 MAV-GS of 6, and then it is pretty stable up to a MAV-GS 
of 9, with a value of ~0.5—that is, halfway between chance 
and the maximal possible number of correct answers.

Thus, the subjects had some notion of what was the 
most abundant value in the display, even though they were 
able to declare what it was in only a bit above half of the 
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Figure 6. Effect of distance between cards. (A) Measurement technique. Cal-
culation of distance between cards is done by counting as one unit the distance 
between two adjacent cards and summing all three distances, the triangle pe-
rimeter. There are 24 discrete distances, each appearing with a different prob-
ability. (B) Combinatorial distribution of distances (dashed lines) and actual 
distribution of detections (solid lines). Only (2,194) cases with at least two sets 
are considered. (C) Probabilities of detecting each distance versus combinato-
rial probabilities of presence of this distance. Note the good fit with a slope of 1, 
suggesting that there is no influence of distance among set cards on the prob-
ability of finding the set.
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tive to their availability)—that is, with priority when more 
than one set was present simultaneously—suggesting that 
sets of lower classes are detected more easily and that 
greater perceptual similarity is a factor in set detection.

We found that the larger the number of sets present, the 
shorter the RTs. There was a good fit between the horse 
race model predictions and the actual results, suggesting 
that the model can account for our results. The implication 
of the success of the horse race model is independence 
(rather than synergy or interference) of the processes of 
finding each set when there is more than one present.

The MAV group may have been more salient when it 
was larger, reflected by decreasing RTs with increasing 
MAV-GS and by more distraction when there was no set 
there. There was some evidence of a preference in search-
ing within the MAV group, supported by detections from 
the MAV group above chance level and by shorter RTs for 
sets within the MAV; presumably, the MAV cards distract 
the search, by attracting attention to them, so a set is de-
tected outside of the MAV only when it “can match the 
competition” of those inside; or, in cases in which there is 
no set within the MAV cards, only when a set is not found 
among them is a further search made. This is the probable 
search strategy used. In detecting and reporting what was 
the MAV, the subjects’ responses were halfway between 
chance and the maximal number of correct answers.

There was not much effect of the distance between the 
cards, suggesting that the subjects were able to perceive 
many cards at a single glance or that the order of scan was 
hopping from place to place, and not necessarily to con-
tiguous regions. On the other hand, there was a slight pref-
erence for sets including (one of) the two central cards, 
those in the middle of the display.

There was some triggering by newly placed cards (pre-
vious set card locations); in a situation of choice, random 
behavior would predict a probability of 58% of choosing 
a set including a previous location, versus an actual occur-
rence of 67% of the cases. But this was still much less than 
it could have been (i.e., up to 100%).

EXPERIMENT 2 
Dimensional Salience

If subjects find sets by first identifying similar cards 
(as is suggested by the results of Experiment 1), we might 
expect that sets with similarity in a more salient dimen-
sion (say, color) will be chosen over similarity in a less 
salient dimension (e.g., shape). We first ask whether there 
are more salient dimensions and then how their prefer-
ence affects set identification. To this end, we performed 
a supplementary experiment to determine dimensional 
preference, in a subject-by-subject manner, expecting that 
the results may aid in understanding strategies used to de-
tect sets, whether intentionally or not.

Method
We compare dimensional salience, using a graph theory algo-

rithm to determine the ordering of the dimensions, and then examine 
how this ordering influences set detection. The salience of different 
dimensions may be compared in a straightforward manner by judg-

Averaging (over the 1,201 rounds) the empiric ratio of 
the number of sets including a previous location and the 
total number of sets present leads to .58 as the random 
choice level of choosing a set with a previous location. In 
practice, such sets were chosen in .67 of the cases (808 of 
1,201 rounds).

In summary, in .89 of the rounds, there was a set in-
cluding a previous location, similar to the theoretically 
expected value of .88. Looking only at rounds including 
both a set with a previous location and another set without 
such card, we found that in 67.28% (confidence interval, 
67.0%–67.4%) of the cases, the chosen set was one in-
cluding a previous location, as compared with a chance 
level of 58% (SD, 14.16%; SE, 0.41%). We conclude 
that there was some triggering by the newly placed cards 
(although not as much as there could have been—i.e., 
100% of the 1,201 cases considered).

Conclusions for Experiment 1

Relating to similarity, we found that sets from lower 
classes were detected more quickly and more often (rela-
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of appearances of each location in the detected sets, taking into 
consideration only the 2,313 rounds with more than one set pres-
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chance level. (B) Frequency of appearance of cards in the detected 
sets as a function of their distance from the center of the display, 
where distance is measured in units equal to half the vertical or 
horizontal distance between adjacent cards. R2  .3.
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requiring a directed acyclic graph (DAG). To fulfill this condition 
and find the ordering, the out-degree (dout) of the nodes is sorted in 
descending order, from (d 1) to 0. When this forms a DAG, its 
path indicates the dimensional ordering. We wish to know whether 
this dimensional salience ordering relates to the detection of sets.

Results and Discussion

We tested 6 subjects following their playing several 
sessions of the usual Set game. The experimental results 
show within-subjects preference consistency but different 
orderings for different subjects. An example for 1 subject 
is shown in Figure 8B, and the average over all subjects 
in Figure 8C. Note that different people may regard dif-
ferent dimensions as salient, so before averaging, the di-
mensions were sorted according to preference for each 
subject, termed d1 . . . d4. Relative salience can also vary 
for the same person, without implying inconsistency, if 
two dimensions are compared on different background 
values of other dimensions. For example, if the reference 
shape is filled, the color may be more important than the 
shape, but if it is empty, it can be the reverse.

To measure the influence of dimensional salience on set 
detection, the dimensions were sorted according to pre-

ing which of two test cards seems more similar to a reference card, 
implying that the dimensional change between the reference and the 
other card is more salient (Medin, 1973). The example of Figure 8A 
illustrates the method. We display three cards (each with only one 
element, and all of the same color): a filled oval reference card and 
empty oval and filled wave test cards, asking which seems more 
similar to the reference. If the filled wave is declared more similar, 
filling is more salient (since this is the changed dimension in the 
other stimulus), and vice versa.

The test was performed for all combinations of dimensions and 
values. Therefore, the total number of such comparisons is the prod-
uct of the number of reference cards, v d, the number of ways of 
choosing two dimensions, and the number of values in each of these 
two (leaving out the value of the reference card itself)—that is,

 
v

d
vd

2
1 3

4

2
3 12 4 2( ) ( ) 1,944..

 
The outcome of these comparisons is translated into a fully directed 

graph with d nodes, representing the dimensions. Weights (wij) of the 
directed edges (di dj), representing the salience, are assigned by the 
number of times dimension i is found to be salient over j, normalized 
to number of comparisons made between them. Then edges for which 
w  .5 are accepted, as demonstrated in Figure 8B.

We then require that the graph have a path through all nodes 
(a Hamiltonian path without closure). This condition ensures con-
sistency. Because it is a full graph, this requirement is equivalent to 

 

BOX 4 
Combinatorics: Probability of at Least One of the Three Cards  

at the Replaced Locations Being Included in a Set

Instead of looking at the probability that these locations will be included in a set, we will look at the 
probability that the cards included in sets will include one of these cards, which is combinatorically the 
same. The latter is preferred because there are always exactly three previous locations, but if there is more 
than one set, the number of cards included in a set varies.

If there is one set in the 12-card array, the probability that all of the 3 cards in the set are not in any of 
the three locations of the newly placed cards is just

 
p 9

12
8
11

7
10

38. .
 

If there is more than one set in the array, involving x cards (five or more), the probability of the newly 
placed cards not overlapping any of these set-including cards is

 
p x x x12

12
11

11
10

10
.
 

Probability (1 p) by number of cards involved in sets (x) is shown in Table 1. Clearly, there is quite 
a high probability that one of the new cards will be included in an existing set. Of course, this is true for 
any group of three cards in the display, and players could as well concentrate on any convenient group, 
and not specifically on the replaced cards.

The empirical distribution P (based on the played games) of the number of cards in the display belong-
ing to any present set is shown in the second row of the table.

Looking at the combinatorics and taking the dot product of the two rows of the table (the probability of 
there being x cards in the sets and their probability of including at least one of the three replaced cards) 
yields the weighted average probability that one of the present sets includes one of the three replaced card 
locations or, equivalently, that one of the three new cards is included in a set—namely, .88.

        
Table 1  

Probability of at Least One Card of the Set Being New

  3  4  5  6  7  8  9  10  11  12

(1 p) .62  .75 .84 .91 .95 .98 .9955 1.0 1.0 1.0
P .18 0 .17 .19 .13 .15 .10   .06   .02 .005

Note—(1 p), probability that at least one of x cards included in set(s) 
is among three changed cards. P, empirical probability that x cards in 
the display were involved in some set.
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ferred order for each subject separately, and the weights 
were averaged, in that order, over all subjects. This allowed 
analysis for all the subjects at once, even though each had 
a different ordering—for example, of the ith preferred 
dimension.

We then compared several parameters of detected and 
missed sets for each dimension, including the following: 
number of times there was similarity (or span) in each di-
mension, within the sets detected by the subject, in cases in 
which there was a choice among several sets (Figure 9A); 
for detected sets with similarity in each dimension, the 
number of sets present from lower classes (Figure 9B) or 
from the same class (Figure 9C), where we might expect 
dimensional salience to overcome preference for lower 
classes.

If dimensional salience significantly influences set 
detection, these parameters should vary systematically. 
However, we found no such monotonic dependence, so we 
infer that there is no apparent effect of dimension salience 
on set detection.

Relating the results of the two sections, so far, the 
three characteristics—class, MAV, and dimensional 
preference—are different and, as may be expected, play 
different roles in set detection. Class determines search 
procedure, and it turns out that finding sets of lower 
classes is easier than finding those of higher classes, per-
haps because there is a natural preference for perceiving 
similarity. MAV is a characteristic of the cards in the 
display and, in accord with the preference for similarity, 
plays a role in the finding of sets (in the MAV group, 
thus sharing similarity in its value). In contrast to these 
characteristics, dimensional preference is a personal 
preference (which we found varies from subject to sub-
ject) and has no bearing, on average, on set detection 
success. In addition, there is usually a conflict between 
detection based on MAV and that based on dimensional 
preference, and MAV wins. Thus, it may not be surpris-
ing that personal preferences do not determine perfor-
mance in the long run.

This division between different levels of influence of 
different perceptual aspects of the stimulus array may re-
flect the special status of the Set game: As was described 
in the introduction, Set is very basically a perceptual 
game, in that it depends on perceiving combinations 
of values among the 12 presented cards. On the other 
hand, the task of the game is conceptual, in that specific 
cognitive rules must be followed. Nevertheless, as has 
been mentioned, conceptual processes may also, in turn, 
derive from and be influenced by perceptual attributes 
(Goldstone & Barsalou, 1998). As such, it is natural that 
different perceptual aspects will have different levels of 
influence on the processes underlying performance of 
this complex task.

EXPERIMENT 3 
Learning and Generalization

In Experiment 3, we tested the dynamics of learning the 
Set game. We also asked whether training-induced learn-
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Supplementary Experiment:

Dimensional Salience

Figure 8. Dimensional salience and algorithm for determin-
ing order of individual dimensional preference. (A) The task. The 
subjects were shown a reference card and were asked to judge 
which of two test cards seemed more similar to it. Each test card 
differed from the reference on one dimension. If a certain card 
was chosen, this meant that the dimensional change between the 
reference and the other test card was more salient. In the example 
shown, if the left card seems more similar to the reference, filling is 
more salient than shape. (B) Demonstration of resulting directed 
acyclic graph (DAG) for 1 subject. Nodes represent dimensions, 
and directed edge weights represent fraction of times that one 
dimension was salient over the other. The path, indicating dimen-
sional ordering, is created by sorting the out-degree (dout) of the 
nodes in descending order. In this case, salience order was color, 
filling, shape, and number. (C) Average DAG over all the subjects. 
Since each subject had an individual preferred order, before av-
eraging we sorted the dimensions according to each subject’s pre-
ferred order, termed d1 . . . d4. Note that edges to less preferred 
dimensions have larger numbers (greater preferences).
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We tested the average across all 6 subjects who played 
the generalized game, taking their first three games, the 
last three before generalization, and those just after the 
new version was applied (as shown in Figure 11). There 
was highly significant learning from the first to the third 
game (one-tailed paired t test over subjects, between the 
two games, with p  .005); also highly significant is 
the difference between performance on the first game 
and that on the third-to-last game played before the sub-
jects switched tasks—that is, the (L-2) game (one-tailed 
paired t test, p  .001). There was no increase in RT 
when the subjects moved to the new version (one-tailed 
paired t test yields p  .3).

We conclude that the training effect generalized to play-
ing the game with new values. This training generalization 
may have resulted from the fact that the subjects did not 
yet reach a stabilized “automatic” level (Goldstone, 1998; 
Treisman, Vieira, & Hayes, 1992)—an assumption sup-
ported by the mean RT—and that as long as performance 
of this task depended on a cognitive process, training gen-
eralized to different values.

SUMMARY AND GENERAL DISCUSSION

Summary
We found that when subjects played the Set game, sev-

eral parameters influenced set detection (Experiment 1), 
including the following: similarity in values (within a 

ing would generalize to playing the game with changed 
stimulus values (see, e.g., Figure 1C). That is, after training 
improved performance, would changing stimulus values 
start learning all over again, or would the ability to identify 
a set be now established for all stimuli? We were interested 
in whether learning this task is high or low level. If there is 
generalization and transfer of learning effects when playing 
with new stimuli, the implication is that learning is a high-
level effect, whereas if training is specific to trained stimuli, 
learning may be a low-level effect (Ahissar & Hochstein, 
1997, 2004; Hochstein & Ahissar, 2002).

Method
Learning experiments included three sessions with 9–12 games. 

Ten subjects participated in three complete sessions, with 1 or 2 games 
in the first session, 3–5 in the second, and 3–6 in the third. Following 
three sessions with the original cards, transfer was tested for 6 of the 
subjects for cards with shapes changed to a circle, a triangle, and a 
square and with changed colors, as demonstrated in Figure 1C.

Results and Discussion

The example learning curve in Figure 10 shows mean 
RT for each class as the games proceed. There is a gradual 
improvement, seen as a decreasing RT. Again, there are 
class-dependent characteristics (see above), with more 
stabilization and lower RTs for lower classes. The arrow 
points to the time when the different version was applied. 
There is not much difference in the RTs after this point.
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Figure 9. Influence of dimensional preference. Dimensions were sorted accord-
ing to individual preference, as in Figures 8B and 8C. Only cases in which there 
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for all the subjects that the set detected had similarity on each of the four dimen-
sions, ordered according to the preference of each subject. (B and C) Number of 
sets present from lower classes (B) or the same class (C), when the detected set 
had similarity in each dimension ordered by individual preference.
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There was a gradual improvement in speed of play-
ing the Set game with experience, with class-dependent 
characteristics (Experiment 3). Training-induced learning 
generalized to new versions of the game with new stimuli, 
suggesting a high-level learning effect.

These results were enabled by “complications” inher-
ent in the Set game but not present in other categoriza-
tion tasks (see the introduction), such as the possibility for 
having more than one set present in each display (allow-
ing the study of competition among the processes seeking 
them) and the game’s including a span rule for dimen-
sions on which similarity is not found. This forced the 
subjects to intermix conceptual and perceptual aspects in 
the search for the rules applying to the current display, or 
even to each of the sets present in it. It also allowed us to 
find perceptual influences in this conceptual task. These 
implications will be discussed below.

An interesting question, regarding perception in gen-
eral, is what happens in the brain during the very recogni-
tion of a set, at the exact moment of conscious perception, 
often called the moment of insight (Ahissar & Hochstein, 
1997; Bowden & Jung-Beeman, 2003; Rubin, Nakayama, 
& Shapley, 1997; Smith, Gosselin, & Schyns, 2006). Fu-
ture studies using the Set game as an interface may ad-
dress this issue.

General Discussion
The Set game task is complex because it involves both 

perceptual and cognitive features (cf. Pomerantz, 2002; 
Schyns, Bonnar, & Gosselin, 2002). Subjects must per-
ceive the values and the relationships among the cards on 
the basis of four visual dimensions, but they must decide 
which three of the present cards form a set on the basis of 
cognitive rules. Improvement may come from improved 
or faster perception of the dimensional values present, 
from better understanding and application of the cogni-
tive rules, or from a combination of these.

Even though the Set game is not a game of categoriza-
tion, it may be of value to compare these two tasks. Re-
garding our finding that sets with more similarity were 
found more often and more rapidly than others, we note 
that categorization, too, may depend on finding similarities 
among different elements (Goldstone, 1994). For example, 
categorization has been seen as the finding of a prototype 
or group of exemplars and the other objects that are more 
similar to these than to its competitors (Rosch, Mervis, 
Gray, Johnson, & Boyes-Braem, 1976). This includes 
similarities along a number of dimensions (referred to as 
family resemblance when there is similarity along many 
but not all dimensions; Medin, Wattenmaker, & Hampson, 
1987; Regehr & Brooks, 1993; Rosch & Mervis, 1975), 
although subjects may base their categorization on a sin-
gle salient dimension (Ashby, Queller, & Berretty, 1999; 
Bower & Trabasso, 1963). It is possible that the same basic 
mechanisms that underlie categorization are also used in 
playing the Set game. If this is the case, the bias that we 
found toward lower class sets may reflect the tendency for 
real-world categories to be organized around similarities, 
rather than around differences (Ashby & Maddox, 2005; 
Hammer et al., 2005, 2007, in press; Medin et al., 1987; 

dimension); number of existing sets in the display, with 
RT acting according to the horse race model, implying 
independence of simultaneous searches; and the MAV 
and its group size, which was searched preferentially, also 
confirming the preference for similarity.

We used an algorithm for determining dimensional sa-
lience (Experiment 2) on the basis of direct comparisons, 
using graph theory. The subjects showed a consistent but 
individual order of preference for dimensions, but this 
seems not to have affected set identification preference.
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ence—that is, a span. This might seem, at first, to con-
tradict the fact that the visual system detects change. The 
brain specializes in identifying difference. This is why 
we are so good at detecting an object that differs from its 
surround. Why, then, are we so good at identifying three 
similar objects among a mixture of items? This could be 
because, among such a diverse collection, what is unique 
is similarity. When the environment is unified, we detect 
difference; when the environment is diverse and colorful, 
we detect the few points of similarity within it.
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